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ABSTRACT: One of the challenges associated with microalgal biomass characterization and the comparison of microalgal
strains and conversion processes is the rapid determination of the composition of algae. We have developed and applied a high-
throughput screening technology based on near-infrared (NIR) spectroscopy for the rapid and accurate determination of algal
biomass composition. We show that NIR spectroscopy can accurately predict the full composition using multivariate linear
regression analysis of varying lipid, protein, and carbohydrate content of algal biomass samples from three strains. We also
demonstrate a high quality of predictions of an independent validation set. A high-throughput 96-well configuration for
spectroscopy gives equally good prediction relative to a ring-cup configuration, and thus, spectra can be obtained from as little as
10−20 mg of material. We found that lipids exhibit a dominant, distinct, and unique fingerprint in the NIR spectrum that allows
for the use of single and multiple linear regression of respective wavelengths for the prediction of the biomass lipid content. This
is not the case for carbohydrate and protein content, and thus, the use of multivariate statistical modeling approaches remains
necessary.
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■ INTRODUCTION

Algal biomass compositional analysis data form the basis of a
large number of techno-economic analysis models that are used
to investigate and compare different processes for algal biofuels
and bioproducts.1 However, the analytical methods used to
generate these data can be time-consuming and laborious and
are far from standardized.2 The techno-economic analysis of
algal biofuel production has identified that a fast growing, high
lipid producing, and easily harvestable algae is critical to make
algal biofuel production economically feasible.1

Current chemical compositional analysis methods require
large amounts of biomass (>1 g) and are thus not applicable for
testing large culture collections or finding improved strains
from thousands of candidates. As an alternative to the labor
intensive chemical analyses, infrared spectroscopy, a non-
destructive and high throughput approach, could be used for
the simultaneous prediction of lipid, protein, and carbohydrate
content in algal biomass. Near-infared (NIR) spectra from
dispersive instruments (i.e., containing a polychromatic
radiation source in combination with a grating as dispersive
elements) consist of complex overtones and combinations of
molecular vibrations, broad peaks from solid, opaque, and even
liquid samples requiring minimal preparation.3 Quantitative
calibration models can be developed for the accurate prediction
of the concentration of biochemical components, based on the
correlations between the spectra and the composition of a
select sample set. With appropriate calibration models, rapid
predictions can be made on the composition of new samples
using only spectra of the new samples.4,5

A prerequisite for the robustness of the NIR models for
predicting composition is that the range in compositional
variability needs to be sufficiently large to allow for predictions
across species and for regression algorithms to subtract to
orthogonal variation from the spectra. With a limited
concentration range of the predicted components, the data
set will likely not be equally distributed, the quality of the
models will be reduced, and it will become more difficult to find
a linear correlation in component concentrations.6 Perhaps
more importantly, the quality of the compositional prediction
model will only be as good as the primary data. A “good” range
for building calibration models depends on the absolute range
of values for a given constituent but also on the precision of the
primary measurements; the ratio of the range to the precision
of a primary measurement is a better metric then either of these
parameters alone. In the case of microalgae, obtaining robust
primary compositional analysis measurements is not trivial and
variation in accuracy of the primary measurements will
undoubtedly carry forward to inaccurate prediction models
using NIR spectroscopy.2

We have previously demonstrated the feasibility of NIR
reflectance spectroscopy for quantitative determination of
exogenously added lipids to algal biomass.7 We were able to
build calibration models based on NIR spectra solely correlated
with the increasing concentration of lipids, indicating that lipids
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in the presence of algal biomass have a sufficient fingerprint in
the IR spectrum and those data formed the basis of this current
research. An important early finding was that NIR, in contrast
to mid-IR, was able to distinguish between neutral and polar
lipids (triglyceride vs phosphatidylcholine lipids) among algal
biomass. However, the question remained on whether biomass
samples with variation in the endogenous composition can be
distinguished on the basis of the NIR spectra.
The use of near and mid-IR on algal biomass has been

explored in the literature and included successful demon-
stration of a relationship between changes in IR spectra with
changes in the cells’ biochemistry.6,8,9 Mid-infrared spectrosco-
py was used for the prediction of the measured composition of
algal biomass based on calibration curves from either single
wavenumbers or multivariate regression of specific spectral
ranges.9 In addition, a comparison between near- and mid-IR
for biomass composition recently showed that total nitrogen
and ash content can be quantitatively correlated with infrared
spectra; however, the authors in ref 6 were unable to
demonstrate significant correlations for lipids or carbohydrates
in microalgal biomass, using both NIR and mid-IR. These
difficulties may be due to the lack of an adequate calibration
sample set. Although the sample set was large, the range in lipid
and carbohydrate concentration of the different samples may
have been too small for spectral correlations. Because algae are
rich in pigments and pigmentation changes during cultivation,
it is likely that the visible region of the spectra dominated by
these differences may skew quantitative correlations with
biomass composition. This effect could compete with spectral
information associated with composition and render quantita-
tive multivariate analyses (e.g., partial least-squares regression,
PLS) more difficult. For the prediction model development
presented here, we have removed the visible region from the
spectra. In addition to spectral wavelength selection, we also
explored mathematical transformation of NIR spectra prior to
building PLS calibration models to help with improving the
predictions, and by subtracting scatter and other spectral
variation not related to the composition of the biomass.
Although NIR in itself can increase the throughput of

compositional analysis, in the case of microalgal biomass, often
the amount of material is not sufficient to use in existing, more
traditional, spectroscopy configurations. For example, a ring-
cup configuration with a 1 in. diameter needs approximately
100−200 mg of biomass to cover the glass surface. In a high-
throughput cultivation environment, this amount may be hard
to obtain, particularly early in the growth cycle of an algal
culture. For example, if the culture volumes are <500 mL, about
20−50 mg of material can be expected from a typical harvest.
To allow for spectroscopy on much smaller biomass quantities
(∼10 mg), we have developed a 96-well plate configuration for
NIR spectroscopy and we report here on the results of a
comparison of the quality of the spectra and the quantitative
predictions of biomass with a ring-cup configuration.
To address these potential challenges, in this work, we have

collected spectra (350−2500 nm) of a selected set of algal
biomass samples from three different strains, fully characterized
in composition with respect to lipids, carbohydrates, protein,
and ash composition. This sample set allows us to address the
following questions arising from previous work and the
literature. Can we distinguish differences in biochemical
composition of algae based on the NIR spectra, and does the
quality of the spectra and resulting prediction models vary with
spectra collected in a ring-cup and a 96-well plate format? Can

we build quantitative prediction models for important algal
biomass constituents (e.g., lipids, carbohydrates, protein, and
ash), and how accurately can we predict the composition of
new, independent samples? To our knowledge, this is the first
report of the use of NIR for the full biochemical composition of
microalgal biomass using a combined species prediction model
and the demonstration of predictions using different sample
presentation configurations (including a 96-well configuration)
and including an independent validation test set of the
predicted composition.

■ MATERIALS AND METHODS
Biomass Samples. Algal biomass was grown in outdoor

photobioreactors at Arizona State University as part of the Sustainable
Algal Biofuels Consortium (SABC) collaboration and shipped to
NREL for full compositional analysis. The biomass was collected over
the course of nutrient depletion for three different strainsChlorella
sp., Scenedesmus sp., and Nannochloropsis sp.and represents strain-
specific patterns of lipid, protein, and carbohydrate content, based on
the timing of harvest. A total of 38 biomass samples were selected for
this work: 10 samples for Chlorella sp., 15 for Scenedesmus sp., and 9
for Nannochloropsis sp.

Biomass Compositional Analysis. The biomass composition was
determined using the current best methods selected for compositional
analysis after a thorough comparison of method uncertainty and
measurement chemistry that was reported in 2012.2 In brief, lipids
were determined as total fatty acid methyl ester content via a direct,
whole biomass transesterification reaction.10 The procedure consisted
of dissolving 10 mg of lyophyilized algal biomass sample in 0.2 mL of
chloroform:methanol (2:1, v/v) and subsequent transesterification of
the lipids in situ with 0.3 mL of HCl:methanol (5%, w/v) for 1 h at 80
°C in the presence of 250 μg of tridecanoic acid (C13) methyl ester as
an internal standard. The resulting FAMEs were extracted with hexane
at room temperature for 1 h and analyzed by gas chromatography with
flame ionization detection (GC-FID) (Agilent 6890N; HP5 30 m 0.25
mm i.d. and 0.25 μm film thickness; temperature program 70−300 °C
over 23 min at 10 °C min−1).

Carbohydrates were determined via acid hydrolysis as follows: 100
mg of algal biomass was subjected to a two-stage sulfuric acid
hydrolysis (1 h at 30 °C in 72% (w/v) sulfuric acid, followed by 1 h at
121 °C in 4% (w/v) sulfuric acid in an autoclave). After hydrolysis, the
acid insoluble residue was separated from the hydrolysate using
ceramic filtering crucibles. Soluble neutral carbohydrates (glucose,
xylose, rhamnose, fucose, galactose, arabinose, and mannose) were
determined by high-performance liquid chromatography; HPLC
analytical conditions were as described in ref 11.

Protein was determined through an elemental nitrogen-to-protein
conversion factor of 4.78 specific for microalgae, derived from the
literature.12 Ash and moisture were determined on 100 mg of algal
biomass, weighed into ceramic crucibles, and dried overnight in a
drying oven (105 °C), followed by precombustion of oven-dried algal
material over a Bunsen burner followed by placement in a muffle
furnace (575 °C) until constant weight.

NIR Spectroscopy and Data Analysis. NIR spectra were
collected on freeze-dried biomass using either the Foss NIR Systems
model XDS Forage Analyzer (Foss, Silver Spring, MD, USA) or the
ASD LabSpec Pro (ASD inc., Boulder, CO, USA). Two sample
presentation configurations were compared. Spectra for the ring-cup
sample presentation were collected using a reflectance module using
the Foss XDS spectrometer (as described for terrestrial biomass in ref
13). For each sample, prepared in a circular sample cell with a 1-in.
insert, a total of four spectra were collected and averaged (three scans
per spectrum of four replicate prepared samples). The spectra were
collected in the range 400−2500 nm. WinISI software (Foss) was used
for collection, standardization, and export of the spectra. Four replicate
spectra were collected for each sample, with each replicate
representing a different angle of cup presentation to the spectrometer.
NIR spectra in the 96-well format were collected in opaque white 96-
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well plates using an ASD LabSpec Pro spectrometer and data collected
in solid white microtiter plates, where empty wells were used for
collecting reference spectra (baselining). Spectra were transformed
from reflectance to absorbance spectra (ln(1/R)) prior to any
mathematical and spectral transformations.
All transformed NIR spectra were processed in R version 3.0.1,14

and statistical analyses were carried out using the following packages:
“chemometrics” version 1.3.8,15 “signal” version 0.7-1,16 and “pls”
version 2.3-017 along with functions present in base R. Principal
Component Analyses (PCA) were calculated using the singular value
decomposition (SVD) algorithm. Partial least squares (PLS)
regression analysis was used for quantitative correlation. For all
models, PLS regression was performed using the NIPALS algorithm,
using full, leave-one-out cross validation on a centered data set. The
optimum number of principal components used for the PLS regression
is shown in the text accompanying the figures and was selected on the
basis of an apparent minimum in root-mean-square error of the
prediction (RMSEP) of the cross-validation of the models. The effect
on the statistics of the calibration models of eliminating part of the
visible spectrum was investigated by recalculating the models excluding
the visible region of the spectrum (wavelengths 400−1100 nm). In
order to find the best calibration model, we investigated the effect of
mathematical spectral pretreatment and spectral derivatives on the
quality of the prediction model for NIR spectra including or excluding
the visible region of the spectra. The algorithms we used were
multiplicative scatter correction (MSC), standard normal variate
(SNV), and Savitsky−Golay smoothing/derivatization of the spectra.
Single and multiple linear regression models were included and used

the following lipid-specific wavelengths: 1215, 1725, and 2305 nm.
The models and predictions of the independent validation set were
performed using functions available in base R.
All raw data and scripts used to generate the results presented here

are available as Supporting Information.

■ RESULTS AND DISCUSSION

Compositional Analysis of Algal Biomass Samples.We
selected 38 biomass samples from three different species:
Chlorella sp. (CZ), Scenedesmus sp. (SD), and Nannochloropsis
sp. (NC). These species were grown under conditions to
maximize lipid, carbohydrate, or protein content, as part of a
larger project that aims to investigate the trade-offs between
total product value and production costs, which emphasized the
need for full biomass compositional analysis.
A summary of the composition and the range for each of the

components is shown in Figure 1. This data set represents
compositional variation spanning the concentration ranges
necessary to build prediction models. The compositional and
spectral variation that is found in these samples shows an even
distribution of lipids (6.8−53.0% DW), protein (7.4−42.5%
DW), carbohydrate (9.5−52.3% DW), and ash (1.1−10.1%
DW) content in the algal biomass. The compositional
variability in this data set makes it possible to develop robust
models for characterization of a wide range of new algal
biomass samples and allows for the statistical reduction and
subtraction of spectral information not correlating to the
biochemical components of biomass.
Spectroscopy in Two Different Configurations. We

collected four replicate spectra from each of the biomass
samples, in both a ring-cup and a 96-well-type sample
presentation configuration with 200 and 10 mg per sample,
respectively. We found that for the small quantities of biomass
good quality spectra could be obtained in the 96-well plate
format; however, a reduction of the absorbance of the 2300−
2500 nm region (and concomitant increase in the noise levels)
was observed due to light absorption by the fiberoptic probe.
Visual differences in the biomass from the different strains are

reflected in large spectral variation in the visible region, as
shown in Figure 2, where typical spectra of a high and low lipid
content biomass sample for each of the three strains are shown.
The spectra illustrate significant interspecies differences in the
visible region of the spectrum. When comparing the respective
high- and low-lipid spectra, it is clear that the same regions of
the NIR spectrum are increasing with increased lipid content
for all three algal strains, with the largest changes found at 1215,
1725, and 2305 nm, respectively. These observations are
consistent with the spectral absorption bands associated with
lipids and found in the literature18 and supported by the major
absorbance from a triglyceride standard included in Figure 2.
The characteristic absorption bands of lipids in the NIR
spectrum are (i) the first overtones of C−H stretching
vibrations (1600−1900 nm), (ii) the region of second
overtones of C−H stretching vibrations (1100−1250 nm),
and (iii) two regions (2000−2350 and 1350−1500 nm) which
contain bands due to combinations of C−H stretching
vibrations and other vibrational modes.18

Principal Component Analysis (PCA). To investigate
structure in the data set and identify the major variation
contributions, we performed principal component analysis
(PCA) on the ring-cup full spectra. PCA indicates grouping
mainly based on species (along principal component 1, PC1,
explaining 84.1% of the variation) and based on the
compositional differences (along PC2, explaining 9.1%
variation). The contribution of the spectral variation after
spectral normalization (MSC and SnvDF) follows a different
pattern, with PC1 indicating a higher contribution of the
compositional information, indicated by the measured lipid
content for each sample (explaining 56.5% variation), and
species-specific information is less pronounced. This illustrates
the advantage of performing mathematical pretreatment prior
to multivariate analysis of spectra, in particular when large
spectral variation due to the use of different strains is present
and not desirable for a species-agnostic prediction model (data
shown in Figure 3, with lipid content indicated for each
sample). The effect of the visible region was not noticeable in
that the principal-component-based groupings observed were
conserved with or without the visible region, indicating that the

Figure 1. Summary of the compositional data used for multivariate
calibration. Lipid, carbohydrate, protein, and ash content for three
strains: Chlorella sp., CZ (n = 10); Nannochloropsis sp., NC (n = 9);
and Scenedesmus sp., SD (n = 15).
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interspecies differences in the visible region of the spectra do
not significantly carry through in the IR region (data not
shown).
Partial Least Square (PLS) Regression. We used PLS

regression to develop quantitative predictive models of algal
biomass composition. The quality of these models is shown in
Figure 4, showing predicted-versus-measured plots of the
calibration and leave-one-out cross-validation models based on
ring-cup-spectra for lipids, carbohydrates, and protein. These
models used three principal components (PCs) for prediction.
A plot of the root mean squared error of the cross validation

(RMSECV) prediction relative to the number of components
or latent variables used in the models is shown in
Supplementary Figure A (Supporting Information) and shows
a clear minimum at two or three components, which supports
our use of three components for the quantitative linear
regressions. The effect of different spectral pretreatments to
remove scatter due to different particle sizes or strain-specific
features is typically scored on the basis of RMSECV and R2

values19 and the number of principal components needed to
build the regression model. The use of fewer principal
components typically gives more robust models, since less
noise is being included in the fitting algorithm. We performed
multiple mathematical spectral pretreatments and found that a
standard normal variate (SNV) correction, where the sum-
squared deviation over the spectrum equals unity, gives the best
models thanks to the removal of the species-specific spectral
fingerprints. This causes a concentration of the spectral
variation around the biochemical composition variation.
One important objective of this work was the demonstration

of a high-throughput configuration for NIR spectroscopy. The
data comparing the prediction model quality between two
sample presentation configurations and after different spectral
treatments is shown in Table 1. For both configurations,
removing the visible region of the spectrum significantly
improved the models, presumably due to the removal of the
effect of pigments and other visible spectral features distinguish-
ing between the three different strains. For lipids, protein, and

Figure 2. Overlay of spectra of high (solid line) and low (dashed line) lipid containing samples for (A) Chlorella sp., (B) Nannochloropsis sp., and
(C) Scenedesmus sp., superimposed on a pure triglyceride spectrum (dotted red line), collected in a 96-well plate format. Selected wavelengths in the
spectra are highlighted that are corresponding to the main lipid overtones, 1215, 1725, and 2305 nm.
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carbohydrates, the correlation coefficients were in all cases close
to 0.9 (except for carbohydrates, where the coefficients are
closer to 0.8), indicating strong and unique fingerprints in the
NIR spectra. The root-mean-squared error in the cross-
validation (RMSECV) values of the SnvDF model with two
PCs indicates a less than 4% deviation for lipids, ∼2.1% for
protein, and less than 6% for carbohydrates (Table 1). The
RMSECV was lowest for the protein measurements; however,
the RMSECV plot against the components indicates a much
less clear minimum, and a larger number of components was
needed to obtain the best calibration model.
When comparing and interpreting the regression coefficients

(Supplementary Figure B, Supporting Information) as those
wavelengths that contribute positively to the calibration
prediction model, we notice significant influence from the

wavelengths that show resemblance to the pure triglyceride
absorbance peak (1215, 1700−1900, and 2305 nm). This
supports the specificity of the model for lipid-specific
absorbance peaks. The coefficients for the protein and
carbohydrate prediction models were distinct from the lipid-
specific peaks and from each other and are shown in
Supplementary Figure B (Supporting Information).
The prediction models for the ash content are not shown

because of their poor performance (R2 = 0.66), accuracy, and
precision. IR models for the prediction of ash are typically
based on the inverse correlation against the “absence” of
organic material because the inorganic content of biomass does
not have a fingerprint in the IR region. The lack of good
prediction models can be partly explained by the rather limited
range in ash concentration (1.1−10%) of the biomass used in
these models.
In another test of the accuracy and precision of the

quantitative prediction models, we have used four samples
(∼10% of the sample set) as independent validation samples,
which were not included in the calibration set. We predicted
the composition using the multivariate linear regression models
built and summarized in Table 1 and compared the accuracy of
the predictions against the measured composition (shown as
the actual value (A) in Table 2). The results of the quantitative
predictions for the independent validation set are shown in
Table 2. Of the 36 predicted values, only 6 predictions showed
more than 15% relative difference from the actual values. Both
the ring-cup and the 96-well format performed well in the
independent prediction. The ring-cup predictions were on
average within 9.1% (relative) of the actual value and the 96-
well predictions within 12.1% of the actual value. This indicates
that the 96-well plate configuration for NIR spectroscopy can
be used for the high-throughput application that we set out to
develop. It is likely that, with the development of prediction
models and larger data sets, the accuracy of the prediction of
independent test samples will improve and the detection of
outliers will be made easier.

Multiple Linear Regression. Because the spectra shown in
Figure 2 illustrate distinct increases in regions of the spectra
related directly to lipid-specific overtones in the NIR spectra,
we investigated the utilization of single and multiple linear
regression for lipid content quantification. This application
opens up more possibilities for rapid screening of biomass
composition and may eliminate the need for multivariate
statistical prediction models for lipid quantification. This
application is often dismissed because of the complexity of
the IR spectra and the likelihood that the lipid-specific features
would be dwarfed by other spectral variation. The correlations
shown in Figure 5 illustrate good correlation when spectral data
from either 1725 or 2305 nm are used (R2 of 0.86 and 0.77,
respectively, Figure 5A and B), although the correlation
between lipid content and absorbance at 1215 nm alone is
unsatisfactory (R2 = 0.66, data not shown). The two
wavelengths 1725 and 2305 nm show a significant improve-
ment in the correlation when both wavelengths are used
together for multiple linear regression (Figure 5C).
The independent quantitative predictions with the four

independent test samples are shown in Table 2 and indicate
that the lipid content in all four samples can be predicted to
within 4% relative deviation of the actual value. These data
suggest that in this particular scenario MLR might outperform
the multivariate prediction models. It remains to be seen
whether this observation is true with other sample sets.

Figure 3. Principal component analysis of ring-cup full spectra, colored
by strain, Chlorella sp., CZ; Nannochloropsis sp., NC; and Scenedesmus
sp., SD before (A) and after (B) spectral normalization. The lipid
content for each spectrum is shown above each symbol.
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When using those same wavelengths for carbohydrate and
protein determination, we found correlations of 0.38 and 0.76,
respectively, with large scatter (data not shown). These results

suggest that these wavelengths are suitable for lipid content
correlation and perhaps for protein content but not for
carbohydrate content predictions. However, further investiga-

Figure 4. Partial least squares (PLS2) modeling results for lipid (A), carbohydrate (B), and protein (C) content of biomass. Results are shown as
predicted vs measured plots. The blue lines represent the calibration prediction, the red line the cross validation prediction, and the black line perfect
agreement between measured and predicted values for each constituent, using three principal components. Open circles represent cross-validated
results of the calibration set. Spectra were smoothed and normalized using a standard normal variate correction (SnvDF) prior to modeling. Other
spectral pretreatments provided similar results (see text and Table 1).

Table 1. Summary Statistics of Correlation Coefficients for Prediction Modelsa

ring-cup format 96-well format

no. of PCs lipid carb protein no. of PCs lipid carb protein

raw 5 R2-c 0.86 0.84 0.93 raw 5 R2-c 0.87 0.86 0.96
RMSEC 4.78 5.15 2.67 RMSEC 4.56 4.93 2.24
R2-cv 0.80 0.79 0.89 R2-cv 0.79 0.78 0.92
RMSECV 5.67 6.05 3.38 RMSECV 5.79 6.27 2.93
RMSEP 4.78 5.15 2.67 RMSEP 4.56 4.93 2.24

SnvDF 3 R2-c 0.91 0.83 0.96 SnvDF 3 R2-c 0.92 0.82 0.96
RMSEC 3.84 5.31 2.11 RMSEC 3.64 5.71 2.23
R2-cv 0.88 0.77 0.95 R2-cv 0.84 0.72 0.92
RMSECV 4.38 6.32 2.40 RMSECV 5.06 7.07 2.91
RMSEP 3.84 5.31 2.11 RMSEP 3.64 5.71 2.23

first deriv 2 R2-c 0.81 0.83 0.89 first deriv 2 R2-c 0.83 0.85 0.88
RMSEC 5.62 5.31 3.37 RMSEC 5.29 5.25 3.58
R2-cv 0.76 0.80 0.85 R2-cv 0.78 0.81 0.85
RMSECV 6.33 5.87 4.02 RMSECV 5.93 5.88 4.15
RMSEP 5.62 5.31 3.37 RMSEP 5.29 5.25 3.58

aAbbreviations: R2-c, correlation coefficient of the calibration; RMSEC, root-mean-squared error of calibration model; R2-cv, correlation of cross
validation; RMSECV, root-mean-squared error of cross validation model; RMSEP, root-mean-squared error of predictions of independent test set.

Table 2. Quantitative Prediction of the Composition of an Independent Validation Set of Four Samplesa

lipids carbohydrates protein

A ring-cup 96-well MLR A ring-cup 96-well A ring-cup 96-well

Scenedesmus sp. 16.33 16.93 16.16 17.26 38.45 34.54 38.25 24.95 25.58 25.46
Nannochloropsis sp. 37.99 35.68 37.78 38.68 12.92 14.00 10.93 16.35 20.41 19.63
Scenedesmus sp. 31.04 33.13 31.59 30.22 42.38 40.23 38.98 9.32 11.04 13.03
Chlorella sp. 11.95 7.48 11.14 11.28 11.38 13.61 8.79 41.20 41.99 41.55

aValues represent predicted concentrations based on either ring-cup or 96-well SNV-corrected spectra using multivariate prediction models or
multiple linear regression (MLR) as indicated. A = actual measured concentration.
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tion of the protein correlation is needed to ensure, for example,
that the protein correlation model is not an inverse relationship
with diminishing lipid content, particularly since protein and
lipid content are inversely correlated in algal biomass.
Carbohydrates do not seem to correlate with the three
wavelengths investigated, although additional wavelengths
could be found. It is likely that the carbohydrate NIR
fingerprints are much less pronounced such that multivariate
full spectrum regression analysis is necessary to obtain good
quantitative correlations.
In conclusion, we have demonstrated that there is spectral

information in the NIR region that can be quantitatively
correlated with compositional differences among algal biomass
samples from three different strains. There are large influences
of interspecies differences in the visible and NIR portions of the
spectrum; spectral transformation functions could partly reduce
this effect and aid in further multivariate analyses. Our work
suggests that regression models can indeed be used on the basis
of the measured lipid content found in algal biomass. However,
it remains to be determined whether cross-species prediction
across more widely different algal species will be possible to
generate robust prediction models, or whether individual
groups of organisms (based, for example, on phyologenetic
relationships) will require separate calibration models, which
would greatly limit the applicability of NIR spectroscopy for
microalgal compositional analysis. The 96-well high-throughput
NIR approach presented here shows that we can obtain
accurate independent predictions from a data set consisting of
38 biomass samples and together with the application of
multiple linear regression analysis allows for a much improved
and increased throughput of microalgal compositional analysis.
A fully integrated high-throughput approach would involve
cultivation of biomass in 96-well plate format followed by
quantitative NIR spectroscopic prediction of the composition.
For the work presented here, we did not use this approach;
rather, we added biomass to 96-well plates. We do not

anticipate a significant difference in spectroscopy character-
istics; however, generating the biomass quantities needed for
full biochemical compositional analysis (75−150 mg of dry
material) may be a challenge for building the initial and strain-
specific calibration models. The technology described here
shows promise as a non-invasive, rapid measurement of full
biochemical composition of algal biomass.
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and absorbance at 1725 nm (A), absorbance at 2305 nm (B), and multiple linear regression (MLR) predicted vs measured plot of lipid content
against two wavelengths (1725 nm, 2305 nm) (C). The blue lines represent the calibration prediction, the red line the cross validation prediction,
and the black line perfect agreement between measured and predicted lipid concentrations.
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